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Abstract-This paper presents static and free vibration analysis of arbitrary quadrilateral flexural
plates by B}-spline functions. An actual arbitrary quadrilateral thin flat plate is mapped onto a
square basic plate and a superelement is constructed for the whole plate, The present numerical
analysis is based on a spline net with finite spline points on the square basic plate. Combination of
B}-spline functions gives an easy way to satisfy various boundary conditions, The displacement
function constructed by B}-spline functions in two directions has been formed to possess more
flexibility to model the deflection shape efficiently, The main features of the present method are:
minimal input preparation, easier programming and higher accuracy achieved by a system with
fewer degrees of freedom. Compared with analytical solutions and other numerical methods, the
method proposed yields excellent results for the test cases considered,

INTRODUCTION

The spline functions are important tools in the analysis of plates and shells. They are
computationally efficient, and flexible to model different geometrical shape and boundary
conditions. In the past decade, some researchers have used the spline functions in numerical
structural analysis. The conventional functions, such as the polynomial functions, the
trigonometric functions, etc. are replaced by the spline functions for interpolation of
displacement. Qin (1982) presented the spline finite point method for the analysis of linear
elastic straight beams and flat plates and he displayed excellent analytical results on the
rectangular plates. This method has been extended to study a variety of structures which
include static, dynamic, and stability problems (Qin, 1985). The solution of plate analysis
by the spline finite point method is usually restricted to plate geometry with rectangular
shape. The conventional finite strip method was modified by Cheung et al. (1982) who then
developed the spline finite strip method. In the spline finite strip method, the trigonometric
functions for the interpolation of displacement used in the conventional finite strip method
were replaced by the B rspline functions in the longitudinal direction. Several investigators
have successfully solved various plate problems recently using the spline finite strip method
(Li et al., 1986; Tham et al., 1986). Various other authors have developed different spline
finite elements for beams, plates and shells, respectively. The element efficiency due to the
choice of the spline functions has been demonstrated in their studies. In the spline finite
elements for beams and plates presented by Leung and Au (1990), the physical coordinates
were introduced into the formulation, which made the assembly ofelements possible. These
elements could only be used for plates with rectangular shape, although they were able to
deal with the various boundary conditions. More computation had to be carried out due
to the matrix transformation between the spline coordinates and the physical coordinates
in this approach. Fan and Luah (1992) employed a set of B-spline shape functions for the
displacement interpolation to develop a new spline finite element for plate bending. The ele
ment had nine nodes, in the shape ofan arbitrary quadrilateral with biquadratic Lagrangian
shape functions for geometric interpolation. It has been shown in their research that
the use ofB-spline functions generally yields an excellent result in two-dimensional structural
analysis. However, a lot of input data due to the mesh generation has to be prepared
carefully. Also, the exclusion of the twisting curvatures at corner nodes impairs the accuracy
of the element in their method.
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In the present paper, the efficient B3-spline functions are employed in two directions
for the interpolation of displacement to study the static and dynamic behavior of thin flat
plates with arbitrary quadrilateral shapes. Compared with other numerical methods of
using the spline functions for plate analysis, the present method may be found new in the
following:

1. In the present method, the entire deformed shape of a plate can be described with
only one displacement function constructed by a series of B3-spline functions. The mesh
generation and large computer-memory space, drawbacks of the discretization methods,
are no longer needed because only one single superelement is used in the whole process.

2. With the help of proper geometrical mapping, the present method can be used to
analyse arbitrary quadrilateral plates. The plate geometries considered in the spline finite
point method proposed by Qin (1982, 1985) and in the spline finite elements developed by
Leung and Au (1990) were restricted to rectangular shape.

3. More flexibility of the displacement field in the present method can be obtained by
applying B3-spline functions in two directions. The displacement functions in the spline
finite point method and in the spline finite strip method were constructed by B-spline
functions in one direction and nonspline functions in another direction.

4. Due to the appropriate combination ofB rspline functions in the displacement field,
the present method avoids the inverse computation resulting from the matrix transformation
which occurs in the spline finite element method.

5. The necessary degrees of freedom to maintain the completeness of the displacement
function, including the twisting curvatures at corner nodes, are all retained in the present
method. In the spline finite elements developed by Fan and Luah (1992), the unavoidable
approximate treatment of the twisting curvatures at corner nodes impairs the accuracy of
the solutions.

Accuracy, efficiency, and simplicity of the present method will be demonstrated in the
following description and numerical examples.

GEOMETRICAL MAPPING

An arbitrary quadrilateral plate in the X-Y plane is shown in Fig. 1(a). It can be
mapped into a 2 x 2 square region in the r-s plane [Fig. 1(b)], if the Cartesian coordinates
x and y within the plate are defined by :

4

X= 'LNiXi
i= I

4

y= 'LNiYi,
i=l

(I)

where Xj and Yj are the coordinates of node i in X-Y plane. The shape functions N j for
mapping can be expressed as follows:
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(a) Actual plate (b) Basic plate
Fig. I. Geometrical mapping.
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N; = (l+r~)(I+s~)/4 (i= 1,2,3,4),
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(2)

where r~ = rir and s~ = SiS; ri and Si are the coordinates of node i in r-s plane. For any
higher order complex shape, the analysis procedure is straightforward so long as the
appropriate mapping functions are selected.

By the chain rule of differentiation, the first and second derivatives of displacement w
for the two coordinate systems are related as :

where
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and where J and 1, are the Jacobian matrix and the plate curvature matrix respectively.
These above relations will be used in the later derivation of the present numerical

analysis.

DISPLACEMENT FUNCTION

A basic plate of dimension 2 x 2 as shown in Fig. I(b) is divided in rand s directions
with Nand M equal sections, respectively, Le.

-I =ro <rl <r2'''<rn = I,

-I = So < s\ < S2 < ... < Sm = I,

where
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r j = ro+ihr hr = 21N,

Sj = so+jhs hs = 21M.

By doing so, a mesh with (N+ I) x (M+ I) spline finite points is spread on the plate.
The displacement function of the mid-surface is based on these spline finite points and

may be expressed as:

where

M+! N+I
W = L L cij(Mr)t/Jj(s) = QC

J~-I j~-I

Q = 'P®. = [t/Jj.]

«1»= [cP-I cPo cPI .. ·cPN+d

'P=[t/J-I t/Jo t/JI t/JM+l]

C = [c~ 1 c~ cf cft+ If
C] = [c Ij COj Clj'" C(N+ I)j]'

(5)

and 'P ® • is the Kronecker product of the row matrices 'P and «1»; C is the generalized
spline coordinate column matrix with dimension (N+3)(M+3).

Brspline function can be found as:

(z+2)Z,

(Z+2)3 -4(z+ 1)3,

(2-z)3 -4(I-z)3,

(2-Z)3,

0,

ZE [-2, -I]

ZE [-1,0]

ZE (0, I]

zE[I,2]

Izi ~ 2,

(6)

and is used to construct cP; and t/J j as shown in the following:

cP-I = 1.5({J3(r;I),

cPo = 0.5hr({J3(r;I)-2hr({J3(r;1 +1),

cPI = ({J3(r;1-I )-0.5({J3(r; 1)+({J3(r;1+I),
cPz = ({J3(';1-2),

cPN-Z = ({J3(r;1 -N+2),

cPN-1 = ({J3(';1 -N+I)-0.5({J3(r;'I_ N)+({J3(r;'1 -N-I).

cPN = 1.5({J3(';'I_ N),

cPN+I = 2hr({J3(';'1 -N-I)-0.5hr({J3(r;'I_N). (7)

Replacing r with s, hr with hs and N with M, one can have the similar expressions for t/J j'
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It is obvious from the above expressions that:

661

(M-I) = t/Jj(-I) = 0 (i,j# -I),

4>;( -I) = t/Jj( -I) = 0 (i, j # 0),

4>;(1) = t/Jil) = 0 (i # N,j # M),

4>;(1)=t/Jj(I)=O (i#N+I,j#M+I),

4>-1(-1) = t/J-1(-1) = I

4>0(-1) = t/Jo(-I) = I

4>N(1) = t/JM(I) = I

4>:V+ 1(1) = t/J~+ 1(1) = I

where 4>; and t/Jj represent first derivatives of 4>; and t/Jj'
Therefore, the treatment of the boundary conditions is easy due to the ingeniously

combined displacement function. For example, eliminating 4>- I term represents a simply
supported side between node I and 4 [Fig. I(b)], and eliminating both 4>-1 and 4>0 terms
makes this side fixed.

FORMULATION OF PRESENT NUMERICAL ANALYSIS

The total potential energy of a Kirchhoff's bending plate can be expressed as:

IfI fln ="2 -1 _I (XTDX- 2qw)IJI dr ds = ~CTGC-CTf.

Using the principle of minimum total potential energy, one obtains:

GC=f

where G is the stiffness matrix:

G = fl fl BTDBIJldrds,

For a plate of isotropic material, the rigiditiy matrix is:

(8)

(9)

(10)

3 [I J.lEt
D = 12(1- J.l2) J.l I

o 0

o ]o ,
(1-J.l)/2

where E = Young's modulus; J.l = Poisson's ratio; t = thickness of the plate.
The load matrix has the form :

where q = the intensity of applied load.
The functional of a thin plate for free vibration is :

(11)

(12)
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According to the Hamilton's principle, one has:

where w = the natural circular frequency.
The mass matrix:

M =fI fI ptQTQIJI dr ds,

(13)

(14)

where p = the material mass density.
The integral functions of the stiffness, mass and load matrices are quite complicated

so that they have to be evaluated numerically. Simpson's integration formulation is applied
in the present method. The values offunctions <Pi and ljJ j and their first and second derivatives
on the spline finite points, which are needed in numerical integration and computation of
displacements, rotations, and moments, are convenient to obtain.

NUMERICAL EXAMPLES

Four plate examples with various shapes and boundary conditions are selected herein
to demonstrate the efficiency and applicability ofthe present method. Excellent performance
of the present method for this type of plate problems is achieved by comparing the results
with analytical solutions and those of other numerical methods, such as the finite element
method (FEM) and the spline finite strip method (SFSM). Some common symbols used in
the Tables of results are defined as follows: q = the intensity of uniformly distributed
load on the entire plate; P = the concentrated load at midpoint of the plate;
D = Et3/[12(1- J.L2)] ; and Poisson's ratio J.L = 0.3 for all test cases in this paper.

Example 1 : bending ofsquare plate
The investigation of square plates is fundamental in the analysis of plate problems.

The results of a square plate using different methods are readily available in literature and
the general characteristics of using different methods may be shown by comparisons of
the obtained results. Both simply supported and clamped square plates under uniformly
distributed and concentrated loads are discussed in this paper. Only a quarter of the plate
is considered due to dual symmetry.

Table 1 gives the central deflections of square plates obtained by the present method
as well as by FEM with a basic type of element-four-node nonconforming C I element
with 12 degrees of freedom. Computed results from both the present method and the spline
finite element method (SFEM) for a simply supported square plate under uniformly

Table I. Comparison of central deflections of simply supported and clamped square plates under uniformly
distributed and central concentrated loads

Number
of

nodes

Clamped plate
Uniform load" Point loadb

FEM Present FEM Presentb

Simply supported plate
Uniform load" Point loadb

FEM Present FEM Present

9
25
49
81

Exact

0.140 0.1260 0.613 0.5419 0.394 0.4064 1.23 1.143
0.130 0.1265 0.580 0.5567 0.403 0.4062 1.18 1.156
0.128 0.1265 0.571 0.5592 0.405 0.4062 1.17 1.158
0.127 0.1265 0.567 0.5601 0.406 0.4062 1.16 1.159

0.1265 0.560 0.4062 1.16

"Multiplier = 1O- 2qa 4/D, bmultiplier = 10- 2 Pa2/D.
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Table 2. Comparison ofcentral deflection and bending moments ofsimply supported square
plate under uniformly distributed load

663

Central
deflection"

Number of nodes SFEM Present

Bending momentC

at center
SFEM Present

Twisting momentC

at corner
SFEM Present

9
25
81

169
Exact

0.41189 0.40640
0.40675 0.40624
0.40627 0.40624
0.40642 0.40624

0.40624

0.4867
0.4911 0.4814
0.4824 0.4795
0.4804 0.4789

0.4789

0.3243
0.3554 0.3247
0.3390 0.3248
0.3330 0.3248

0.3248

"Multiplier = 1O-2qa4/D, Cmultiplier = 1O-'qa2.

distributed load are shown in Table 2. Nine-node C I element in SFEM here has 21 degrees
of freedom and has shown advantages over its counterparts in FEM through research
carried out by Fan and Luah (1992). It should be noted, before a detailed observation on
the compared results in Tables 1 and 2, that total number of unknowns without imposition
of nodal restraints for FEM, SFEM and the present method are 3NM+3(N+M)+3,
2NM+2.5(N+M)+3 and NM+3(N+M)+9, respectively, under the same mesh NxM
or the same number of nodes (N+ 1)(M+ 1). With the imposition of nodal restraints,
different methods may reduce a few and nearly the same number of unknowns for various
boundary conditions. This indicates that the sequence of methods with fewer unknowns is
the present method, SFEM, and FEM when they have equal number of nodes on the
analysed plate. By studying Tables 1 and 2, one can find that the accuracy and convergence
of the present method are excellent and fewer number of nodes are needed than the other
two methods to yield sufficiently accurate results. The degrees of freedom required using
the present method are only about 30% and 50% when compared with the four-node
element and the nine-node spline element. It can be seen in Table 2 that the central deflection,
the central bending moment and the corner twisting moment by the present method all
converge rapidly, while the results by SFEM display a slower convergence caused mainly
by the approximate elimination of the twisting curvatures at corner nodes.

Example 2: bending ofskew plate
Two types of skew plates under uniformly distributed load q shown in Fig. 2 are

analysed in this paper: They are simply supported (four simply supported edges) and simply
clamped (two simply supported edges and two clamped edges). Central deflections and
moments of the skew plates with different skew angles are used to compare with those by
the spline finite strip method (SFSM) (Tham et al., 1986). The total degrees of freedom
without the imposition of boundary conditions by using SFSM for plate analysis are
2NM+6N+2M+6 under mesh NxM, whereas NM+3(N+M)+9 is for the present

y

T

simply supported

simply supported or clamped

Fig. 2. Skew plate.

x
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Table 3. Central deflections (we> and moments (M" M v) for simply supported skew plates
under uniformly distributed load

Skew angle IX fJ, fJv
(J SFSM Present SFSM Present SFSM Present

90° 0.406 0.406 0.0479 0.0479 0.0479 0.0479
75° 0.376 0.376 0.0462 0.0462 0.0476 0.0476
60° 0.294 0.293 0.0409 0.0409 0.0463 0.0463
45° 0.179 0.177 0.0318 0.0315 0.0426 0.0424
30° 0.0705 0.0688 0.0190 0.0183 0.0339 0.0334

Table 4. Central deflections (we) and moments (M"My ) for simply clamped skew plates
under uniformly distributed load

Skew angle IX fJx fJy
(J SFSM Present SFSM Present SFSM Present

90° 0.192 0.192 0.0244 0.0244 0.0333 0.0333
75° 0.176 0.176 0.0233 0.0234 0.0328 0.0329
60° 0.135 0.135 0.0203 0.0204 0.0310 0.0312
45° 0.0815 0.0814 0.0156 0.0157 0.0276 0.0278
30° 0.0327 0.0326 0.0098 0.0097 0.0216 0.0217

we = IXqL 3Lx/(I00D), M x = fJxqLL" M, = fJyqLL" Lx = L sin (J, t = O.lL.

method as mentioned above. Comparative results of two methods shown in Tables 3 and
4 are found in a very good agreement for all different skew angle cases. It should be noted
that the plate meshes generated to gain the results in Tables 3 and 4 are 17 x II by SFSM
and 16 x 16 by the present method. The number of total parameters in the present method
is about 70% of those in SFSM.

Example 3: flexural free vibration of trapezoidal plate
A simply supported trapezoidal plate is shown in Fig. 3 and it will become a rectangular

plate when bja = 1.0. The nondimensionalized frequency parameters of the first six modes
are given in Tables 5 and 6 for the rectangular and the trapezoidal plates, respectively. An

I 1

Fig. 3. Trapezoidal plate.

Table 5. Frequency parameters). = w(d 2/tt2)(pt/D)I!2 of simply supported
rectangular plate (b/a = 1.0)

Mode 2 3 4 5 6

FEM-I 3.2505 6.253 10.029 11.279 13.033 18.070
Present 3.2502 6.2524 10.014 11.277 13.018 18.047
Exact 3.25 6.25 10.0 11.25 13.0 18.0
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Table 6. Frequency parameters A = w(d2/n 2)(pt/D) 1/2 of simply supported
trapezoidal plate (b/a = 0.4)

Mode 2 3 4 5 6

FEM-l 5.3927 9.438 14.744 15.964 21.911 23.250
FEM-2 5.4616 9.463 14.753 16.146 21.968 23.267
Present 5.3906 9.4311 14.727 15.936 21.909 23.205
Series solution 5.3896 9.424 14.685 15.911 21.700 23.146

exact theoretical solution for the natural frequencies and normal modes of the simply
supported trapezoidal plate is available only for the rectangular case, when b/a = 1.0
(Leissa, 1969). For the cases of b/a =F 1.0, Chopra and Durvasula (1971) presented an
approximate solution of the problem based on trigonometric series expansion with
coefficients determined by the Galerkin method and their results are generally used as a
reference. Exact results for the rectangular case and series solution for the trapezoidal case
are included in Tables 5 and 6. Orris and Petyt (1973) used two types of high precision,
conforming, plate bending elements, one a qudrilateral (16 DOF) and the other a triangular
(12 DOF), to investigate the free vibration characteristics ofthe same plates. For compari
son, their FEM results are also quoted in Tables 5 and 6, where the frequency parameters
of FEM-l and FEM-2 were computed by using 12 quadrilateral elements with 95 total
DOF and 12 quadrilateral plus 2 triangular elements with 101 total DOF, respectively, on
a half plate.

The results obtained from the present method using 3 x 8 mesh with 66 total DOF are
shown in the same tables along with the results mentioned above. Excellent agreements
with the analytical solutions and better accuracy by fewer unknowns than the conforming
quadrilateral and triangular elements can again be observed. The modes shapes and cor
responding frequency parameters obtained from the first six modes for both rectangular
and trapezoidal cases are exhibited in Fig. 4. They are similar to the nodal patterns presented
by Chopra and Durvasula (1971), and Orris and Petyt (1973).

Example 4 : bending of irregular quadrilateral plate
An irregular quadrilateral plate with the coordinates of four comer nodes 1, 2, 3 and

4 is shown in Fig. 5. The central lines AB and EF connect the midpoints at two opposite
sides. Midpoint C of the plate is the intersection of the central lines AB and EF. Bending
analysis of this plate with two opposite sides simply supported and other two opposite sides
clamped has been carried out. The results of deflection and moments at midpoint C for this
plate under uniformly distributed load are given in Table 7, and deflected curves along the

X= 3.250 6.252 10.01 11.28 13.02 18.05

DEJ[O§BJE§
(a) Rectangular plate

X= 5.391 9.431 14.73 15.94 21.91 23.21

(b) Trapezoidal plate
Fig. 4. Nodal patterns and frequency parameters for first six modes of simply supported rectangular

and trapezoidal plates.
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y 4(2,18)

2(16,4)

1(0,0) """"'=---------.... x

_ _ _ _ simply supported

clamped

Fig. 5. Irregular quadrilateral plate.

Table 7. Deflection and moments at midpoint C for irregular quadri
lateral plate under uniformly distributed load (q = I, D = 1)

Bending Bending Twisting
Mesh Deflection momentMx moment My moment Mxy

8x8 58.885 6.082 3.717 0.2150
12x 12 58.920 6.010 3.705 0.2089
16x 16 58.929 5.984 3.700 0.2070

central lines AB and EE under uniformly distributed load and a concentrated force at
midpoint C, respectively, are plotted in Figs 6 and 7. No comparison can be made for this
example because no results for such an irregular quadrilateral plate are available in the
literature. The results obtained here can serve as a test case for future researchers.

8A C
--j."""" ...L- "='"J--..... Distance

from A to B

o
N

I:o
+=00
CIlw
;;::

CIl
(:\

Fig. 6. Deflected curves along central line AB (q = 1, P = 50, D = 1, mesh 16 x 16).

Fc

concentrated force P
at mIdpoInt C

E
Distance

--/o;:o----------...L-------------",I---..... from E to F

o
-.t

o
N

I:
o

+=00
Q>W

;;::..
(:\

Fig. 7. Deflected curves along centralline EF (q = 1, P = 50, D = 1, mesh 16 x 16).
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CONCLUSIONS

B3-spline functions for the interpolation ofdisplacement in two directions are employed
herein to analyse the arbitrary quadrilateral plate problems in this paper. From the theor
etical considerations and the numerical examples, the present method can be summarized
to achieve the following three advantages for this class of plate problems, as compared with
other numerical methods.

1. By using the efficient and flexible B3-spline functions in the displacement field, the
present method does not require any discretization, thus the solutions obtained can be
found to be more reliable. This method has also demonstrated with more rapid convergence
and better accuracy than those discretization methods.

2. Under the mesh of Nx M for an arbitrary quadrilateral plate, the present method
with (N+3)(M+3) parameters for the interpolation ofdisplacement requires fewer degrees
of freedom and yields more accurate results than other numerical methods, such as the
conventional four-node element with 3(N+ I)(M+ I) parameters, the nine-node spline
element with 2(N+ I)(M+ I) + (N+M +2)/2 parameters, and the spline finite strip method
with 2(N+ 1)(M+3) parameters.

3. Unlike other discretization methods, the present method does not require mesh
generation so that only minimal input data is needed. Also this method avoids the additional
moment modifications due to the different moment values at the sharing nodes in dis
cretization methods.
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